Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Cardiovasc Imaging ; 40(1): 83-91, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37874446

RESUMO

T1/T2 parametric mapping may reveal patterns of elevation ("hotspots") in myocardial diseases, such as rejection in orthotopic heart transplant (OHT) patients. This study aimed to evaluate the diagnostic accuracy of free-breathing (FB) multi-parametric SAturation recovery single-SHot Acquisition (mSASHA) T1/T2 mapping in identifying hotspots present on conventional Breath-held Modified Look-Locker Inversion recovery (BH MOLLI) T1 and T2-prepared balanced steady-state free-precession (BH T2p-bSSFP) maps in pediatric OHT patients. Pediatric OHT patients underwent noncontrast 1.5T CMR with BH MOLLI T1 and T2p-bSSFP and prototype FB mSASHA T1/T2 mapping in 8 short-axis slices. FB and BH T1/T2 hotspots were segmented using semi-automated thresholding (ITK-SNAP) and their 3D coordinate locations were collected (3-Matic, Materialise, Leuven, Belgium). Receiver operator characteristic curve analysis and measures of central tendency were utilized. 40 imaging datasets from 23 pediatric OHT patients were obtained. FB mSASHA yielded a sensitivity of 82.8% for T1 and 80% for T2 maps when compared to the standard BH MOLLI, as well as 100% specificity for both T1 and T2 maps. When identified on both FB and BH maps, hotspots overlapped in all cases, with an average long axis offset between FB and BH hotspot centers of 5.8 mm (IQR 3.5-8.2) on T1 and 5.9 mm (IQR 3.5-8.2) on T2 maps. FB mSASHA T1/T2 maps can identify hotspots present on conventional BH T1/T2 maps in pediatric patients with OHT, with high sensitivity, specificity, and overlap in 3D space. Free-breathing mapping may improve patient comfort and facilitate OHT assessment in younger patient populations.


Assuntos
Transplante de Coração , Imageamento por Ressonância Magnética , Humanos , Criança , Imageamento por Ressonância Magnética/métodos , Valor Preditivo dos Testes , Coração , Transplante de Coração/efeitos adversos , Suspensão da Respiração , Reprodutibilidade dos Testes , Imagens de Fantasmas
2.
3 Biotech ; 14(1): 5, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38074290

RESUMO

Nano-PCR is a potential tool for the early detection of plant viruses. In the current study, different concentrations of silver nanoparticles (20 nm) and magnesium oxide nanoparticles (50 nm) were included in the PCR mixture to improve the sensitivity of PCR for the detection of tomato leaf curl virus. The inclusion of nanoparticles in single or combination in PCR mixture has resulted in improvement of PCR sensitivity. Four-fold improvement was exhibited by the inclusion of 3 ng/µL silver nanoparticles, whereas the combination of silver and magnesium oxide nanoparticles (3 ng/µL and 200 ng/µL, respectively), resulted in a 4.5-fold improvement. The inclusion of 200 ng/µL of magnesium oxide nanoparticles in the PCR mixture exhibited a 7.6-fold increase in PCR sensitivity. Replacement of magnesium chloride with a combination of silver and magnesium oxide nanoparticles (3 ng/µL and 275 ng/µL, respectively) resulted in a 12-fold increase. A 13-fold improvement in PCR sensitivity was observed by the replacement of magnesium chloride in PCR buffer with 275 ng/µL of magnesium oxide nanoparticles. This could also produce detectable amplicon in PCR with a minimum of 25 cycles, resulting in a 26.5% reduction in the duration of PCR. This is the first report on the use of magnesium oxide nanoparticles in PCR for the early detection and better management of tomato leaf curl virus. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03842-2.

3.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175585

RESUMO

Sepsis is a life-threatening disease characterized by excessive inflammation leading to organ dysfunction. During sepsis, pulmonary microvascular endothelial cells (PMVEC) lose barrier function associated with inter-PMVEC junction disruption. Matrix metalloproteinases (MMP) and a disintegrin and metalloproteinases (ADAM), which are regulated by tissue inhibitors of metalloproteinases (TIMPs), can cleave cell-cell junctional proteins, suggesting a role in PMVEC barrier dysfunction. We hypothesize that septic PMVEC barrier dysfunction is due to a disruption in the balance between PMVEC-specific metalloproteinases and TIMPs leading to increased metalloproteinase activity. The effects of sepsis on TIMPs and metalloproteinases were assessed ex vivo in PMVEC from healthy (sham) and septic (cecal ligation and perforation) mice, as well as in vitro in isolated PMVEC stimulated with cytomix, lipopolysaccharide (LPS), and cytomix + LPS vs. PBS. PMVEC had high basal Timp expression and lower metalloproteinase expression, and septic stimulation shifted expression in favour of metalloproteinases. Septic stimulation increased MMP13 and ADAM17 activity associated with a loss of inter-PMVEC junctional proteins and barrier dysfunction, which was rescued by treatment with metalloproteinase inhibitors. Collectively, our studies support a role for metalloproteinase-TIMP imbalance in septic PMVEC barrier dysfunction, and suggest that inhibition of specific metalloproteinases may be a therapeutic avenue for septic patients.


Assuntos
Células Endoteliais , Sepse , Animais , Camundongos , Células Cultivadas , Células Endoteliais/metabolismo , Lipopolissacarídeos/farmacologia , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo , Metaloproteases/metabolismo , Sepse/metabolismo
4.
J Mol Endocrinol ; 70(3)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748836

RESUMO

Human genome-wide association studies found single-nucleotide polymorphisms (SNPs) near LYPLAL1 (Lysophospholipase-like protein 1) that have sex-specific effects on fat distribution and metabolic traits. To determine whether altering LYPLAL1 affects obesity and metabolic disease, we created and characterized a mouse knockout (KO) of Lyplal1. We fed the experimental group of mice a high-fat, high-sucrose (HFHS) diet for 23 weeks, and the controls were fed regular chow diet. Here, we show that CRISPR-Cas9 whole-body Lyplal1 KO mice fed an HFHS diet showed sex-specific differences in weight gain and fat accumulation as compared to chow diet. Female, not male, KO mice weighed less than WT mice, had reduced body fat percentage, had white fat mass, and had adipocyte diameter not accounted for by changes in the metabolic rate. Female, but not male, KO mice had increased serum triglycerides, decreased aspartate, and decreased alanine aminotransferase. Lyplal1 KO mice of both sexes have reduced liver triglycerides and steatosis. These diet-specific effects resemble the effects of SNPs near LYPLAL1 in humans, suggesting that LYPLAL1 has an evolutionary conserved sex-specific effect on adiposity. This murine model can be used to study this novel gene-by-sex-by-diet interaction to elucidate the metabolic effects of LYPLAL1 on human obesity.


Assuntos
Estudo de Associação Genômica Ampla , Lisofosfolipase , Obesidade , Animais , Feminino , Humanos , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Triglicerídeos , Lisofosfolipase/genética
5.
J Cardiovasc Magn Reson ; 24(1): 51, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192743

RESUMO

BACKGROUND: Cardiovascular magnetic resonance (CMR) is emerging as an important tool for cardiac allograft assessment. Native T1 mapping may add value in identifying rejection and in assessing graft dysfunction and myocardial fibrosis burden. We hypothesized that CMR native T1 values and features of textural analysis of T1 maps would identify acute rejection, and in a secondary analysis, correlate with markers of graft dysfunction, and with fibrosis percentage from endomyocardial biopsy (EMB). METHODS: Fifty cases with simultaneous EMB, right heart catheterization, and 1.5 T CMR with breath-held T1 mapping via modified Look-Locker inversion recovery (MOLLI) in 8 short-axis slices and subsequent quantification of mean and peak native T1 values, were performed on 24 pediatric subjects. A single mid-ventricular slice was used for image texture analysis using nine gray-level co-occurrence matrix features. Digital quantification of Masson trichrome stained EMB samples established degree of fibrosis. Markers of graft dysfunction, including serum brain natriuretic peptide levels and hemodynamic measurements from echocardiography, catheterization, and CMR were collated. Subjects were divided into three groups based on degree of rejection: acute rejection requiring new therapy, mild rejection requiring increased ongoing therapy, and no rejection with no change in treatment. Statistical analysis included student's t-test and linear regression. RESULTS: Peak and mean T1 values were significantly associated with acute rejection, with a monotonic trend observed with increased grade of rejection. Texture analysis demonstrated greater spatial heterogeneity in T1 values, as demonstrated by energy, entropy, and variance, in cases requiring treatment. Interestingly, 2 subjects who required increased therapy despite low grade EMB results had abnormal peak T1 values. Peak T1 values also correlated with increased BNP, right-sided filling pressures, and capillary wedge pressures. There was no difference in histopathological fibrosis percentage among the 3 groups; histopathological fibrosis did not correlate with T1 values or markers of graft dysfunction. CONCLUSION: In pediatric heart transplant patients, native T1 values identify acute rejection requiring treatment and may identify graft dysfunction. CMR shows promise as an important tool for evaluation of cardiac grafts in children, with T1 imaging outperforming biopsy findings in the assessment of rejection.


Assuntos
Transplante de Coração , Criança , Fibrose , Rejeição de Enxerto/diagnóstico por imagem , Rejeição de Enxerto/patologia , Transplante de Coração/efeitos adversos , Humanos , Imageamento por Ressonância Magnética , Miocárdio/patologia , Peptídeo Natriurético Encefálico , Valor Preditivo dos Testes , Doadores de Tecidos
6.
JCI Insight ; 7(21)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36048537

RESUMO

BM adipocytes (BMAd) are a unique cell population derived from BM mesenchymal progenitors and marrow adipogenic lineage precursors. Although they have long been considered to be a space filler within bone cavities, recent studies have revealed important physiological roles in hematopoiesis and bone metabolism. To date, the approaches used to study BMAd function have been confounded by contributions by nonmarrow adipocytes or by BM stromal cells. To address this gap in the field, we have developed a BMAd-specific Cre mouse model to deplete BMAds by expression of diphtheria toxin A (DTA) or by deletion of peroxisome proliferator-activated receptor gamma (Pparg). We found that DTA-induced loss of BMAds results in decreased hematopoietic stem and progenitor cell numbers and increased bone mass in BMAd-enriched locations, including the distal tibiae and caudal vertebrae. Elevated bone mass appears to be secondary to enhanced endosteal bone formation, suggesting a local effect caused by depletion of BMAd. Augmented bone formation with BMAd depletion protects mice from bone loss induced by caloric restriction or ovariectomy, and it facilitates the bone-healing process after fracture. Finally, ablation of Pparg also reduces BMAd numbers and largely recapitulates high-bone mass phenotypes observed with DTA-induced BMAd depletion.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Feminino , Camundongos , Animais , Medula Óssea/metabolismo , Osteogênese , Células da Medula Óssea , PPAR gama/genética , PPAR gama/metabolismo , Células-Tronco Mesenquimais/metabolismo , Adipócitos/metabolismo
7.
Elife ; 112022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35731039

RESUMO

To investigate roles for bone marrow adipocyte (BMAd) lipolysis in bone homeostasis, we created a BMAd-specific Cre mouse model in which we knocked out adipose triglyceride lipase (ATGL, Pnpla2 gene). BMAd-Pnpla2-/- mice have impaired BMAd lipolysis, and increased size and number of BMAds at baseline. Although energy from BMAd lipid stores is largely dispensable when mice are fed ad libitum, BMAd lipolysis is necessary to maintain myelopoiesis and bone mass under caloric restriction. BMAd-specific Pnpla2 deficiency compounds the effects of caloric restriction on loss of trabecular bone in male mice, likely due to impaired osteoblast expression of collagen genes and reduced osteoid synthesis. RNA sequencing analysis of bone marrow adipose tissue reveals that caloric restriction induces dramatic elevations in extracellular matrix organization and skeletal development genes, and energy from BMAd is required for these adaptations. BMAd-derived energy supply is also required for bone regeneration upon injury, and maintenance of bone mass with cold exposure.


Assuntos
Medula Óssea , Lipólise , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Medula Óssea/metabolismo , Lipase/metabolismo , Lipólise/genética , Masculino , Camundongos
8.
J Mech Behav Biomed Mater ; 131: 105230, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35561600

RESUMO

ZnO-CaF2-P2O5 glasses doped with different concentrations of V2O5 (ranging from 0 to 1.0 mol %) were prepared. The prepared bio glasses are soaked in SBF for duration of 2, 3, 7 and 10 days in separate plastic containers and then kept in incubator maintained at body temperature 36.5 °C. The influence of valence states of vanadium ions (V4+/V5+) with respect to the structural aspects by means of FTIR and Raman Spectra, elastic properties by means of relevant parameters, the thermal stability by means of DTA studies and other spectroscopic properties by using OA and ESR studies are studied. The raise in wavenumber and comparative areas of the two absorption bands corresponding to electronic transitions 2B2g → E2g, 2B2g → 2B1g respectively in optical absorption spectra of these CZPV glasses clearly indicate that vanadium ions have octahedral co-ordination with tetragonal compression due to modifier action of V2O5in the glass network. The optical absorption and ESR studies have revealed that vanadium ions exist in V4+ states. The characteristic temperatures of these prepared glasses obtained from DTA curves explain modifications taking place in the structure of glass network. The structural changes are explained with the aid of FTIR and Raman studies. The bio active nature of the titled glasses is evident from dissociation and pH studies by SEM &EDS of these glasses before and after immersion into SBF.


Assuntos
Vanádio , Óxido de Zinco , Cálcio , Vidro/química , Íons , Óxido de Zinco/química
9.
Diabetes ; 70(9): 1970-1984, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34088712

RESUMO

Mechanisms by which autosomal recessive mutations in Lmna cause familial partial lipodystrophy type 2 (FPLD2) are poorly understood. To investigate the function of lamin A/C in adipose tissue, we created mice with an adipocyte-specific loss of Lmna (Lmna ADKO). Although Lmna ADKO mice develop and maintain adipose tissues in early postnatal life, they show a striking and progressive loss of white and brown adipose tissues as they approach sexual maturity. Lmna ADKO mice exhibit surprisingly mild metabolic dysfunction on a chow diet, but on a high-fat diet they share many characteristics of FPLD2 including hyperglycemia, hepatic steatosis, hyperinsulinemia, and almost undetectable circulating adiponectin and leptin. Whereas Lmna ADKO mice have reduced regulated and constitutive bone marrow adipose tissue with a concomitant increase in cortical bone, FPLD2 patients have reduced bone mass and bone mineral density compared with controls. In cell culture models of Lmna deficiency, mesenchymal precursors undergo adipogenesis without impairment, whereas fully differentiated adipocytes have increased lipolytic responses to adrenergic stimuli. Lmna ADKO mice faithfully reproduce many characteristics of FPLD2 and thus provide a unique animal model to investigate mechanisms underlying Lmna-dependent loss of adipose tissues.


Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Densidade Óssea/fisiologia , Modelos Animais de Doenças , Lamina Tipo A/metabolismo , Lipodistrofia Parcial Familiar/metabolismo , Camundongos , Camundongos Knockout
10.
Diabetes ; 70(7): 1419-1430, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34155042

RESUMO

Wnt signaling is an ancient and evolutionarily conserved pathway with fundamental roles in the development of adipose tissues. Roles of this pathway in mesenchymal stem cell fate determination and differentiation have been extensively studied. Indeed, canonical Wnt signaling is a significant endogenous inhibitor of adipogenesis and promoter of other cell fates, including osteogenesis, chondrogenesis, and myogenesis. However, emerging genetic evidence in both humans and mice suggests central roles for Wnt signaling in body fat distribution, obesity, and metabolic dysfunction. Herein, we highlight recent studies that have begun to unravel the contributions of various Wnt pathway members to critical adipocyte functions, including carbohydrate and lipid metabolism. We further explore compelling evidence of complex and coordinated interactions between adipocytes and other cell types within adipose tissues, including stromal, immune, and endothelial cells. Given the evolutionary conservation and ubiquitous cellular distribution of this pathway, uncovering the contributions of Wnt signaling to cell metabolism has exciting implications for therapeutic intervention in widespread pathologic states, including obesity, diabetes, and cancers.


Assuntos
Adipócitos/fisiologia , Lipogênese/fisiologia , Células-Tronco Mesenquimais/fisiologia , Via de Sinalização Wnt/fisiologia , Adipogenia/fisiologia , Animais , Humanos , Doenças Metabólicas/etiologia , Camundongos , Osteoblastos/fisiologia , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , beta Catenina/fisiologia
11.
PLoS Biol ; 19(5): e3000988, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33979328

RESUMO

Although visceral adipocytes located within the body's central core are maintained at approximately 37°C, adipocytes within bone marrow, subcutaneous, and dermal depots are found primarily within the peripheral shell and generally exist at cooler temperatures. Responses of brown and beige/brite adipocytes to cold stress are well studied; however, comparatively little is known about mechanisms by which white adipocytes adapt to temperatures below 37°C. Here, we report that adaptation of cultured adipocytes to 31°C, the temperature at which distal marrow adipose tissues and subcutaneous adipose tissues often reside, increases anabolic and catabolic lipid metabolism, and elevates oxygen consumption. Cool adipocytes rely less on glucose and more on pyruvate, glutamine, and, especially, fatty acids as energy sources. Exposure of cultured adipocytes and gluteal white adipose tissue (WAT) to cool temperatures activates a shared program of gene expression. Cool temperatures induce stearoyl-CoA desaturase-1 (SCD1) expression and monounsaturated lipid levels in cultured adipocytes and distal bone marrow adipose tissues (BMATs), and SCD1 activity is required for acquisition of maximal oxygen consumption at 31°C.


Assuntos
Adipócitos Brancos/metabolismo , Regulação da Temperatura Corporal/fisiologia , Adaptação Fisiológica , Adipócitos/metabolismo , Adipócitos/fisiologia , Adipócitos Marrons/metabolismo , Adipócitos Brancos/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Temperatura Baixa , Ácidos Graxos/metabolismo , Feminino , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley , Estearoil-CoA Dessaturase/metabolismo
12.
Diabetes ; 70(2): 400-414, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33214137

RESUMO

Mice lacking SH2B1 and humans with variants of SH2B1 display severe obesity and insulin resistance. SH2B1 is an adapter protein that is recruited to the receptors of multiple hormones and neurotrophic factors. Of the four known alternatively spliced SH2B1 isoforms, SH2B1ß and SH2B1γ exhibit ubiquitous expression, whereas SH2B1α and SH2B1δ are essentially restricted to the brain. To understand the roles for SH2B1α and SH2B1δ in energy balance and glucose metabolism, we generated mice lacking these brain-specific isoforms (αδ knockout [αδKO] mice). αδKO mice exhibit decreased food intake, protection from weight gain on standard and high-fat diets, and an adiposity-dependent improvement in glucose homeostasis. SH2B1 has been suggested to impact energy balance via the modulation of leptin action. However, αδKO mice exhibit leptin sensitivity that is similar to that of wild-type mice by multiple measures. Thus, decreasing the abundance of SH2B1α and/or SH2B1δ relative to the other SH2B1 isoforms likely shifts energy balance toward a lean phenotype via a primarily leptin-independent mechanism. Our findings suggest that the different alternatively spliced isoforms of SH2B1 perform different functions in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Encéfalo/metabolismo , Obesidade/genética , Isoformas de Proteínas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Resistência à Insulina/genética , Leptina/farmacologia , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Isoformas de Proteínas/metabolismo
13.
Mol Metab ; 42: 101078, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919095

RESUMO

OBJECTIVE: Canonical Wnt/ß-catenin signaling is a well-studied endogenous regulator of mesenchymal cell fate determination, promoting osteoblastogenesis and inhibiting adipogenesis. However, emerging genetic evidence in humans links a number of Wnt pathway members to body fat distribution, obesity, and metabolic dysfunction, suggesting that this pathway also functions in adipocytes. Recent studies in mice have uncovered compelling evidence that the Wnt signaling pathway plays important roles in adipocyte metabolism, particularly under obesogenic conditions. However, complexities in Wnt signaling and differences in experimental models and approaches have thus far limited our understanding of its specific roles in this context. METHODS: To investigate roles of the canonical Wnt pathway in the regulation of adipocyte metabolism, we generated adipocyte-specific ß-catenin (ß-cat) knockout mouse and cultured cell models. We used RNA sequencing, ChIP sequencing, and molecular approaches to assess expression of Wnt targets and lipogenic genes. We then used functional assays to evaluate effects of ß-catenin deficiency on adipocyte metabolism, including lipid and carbohydrate handling. In mice maintained on normal chow and high-fat diets, we assessed the cellular and functional consequences of adipocyte-specific ß-catenin deletion on adipose tissues and systemic metabolism. RESULTS: We report that in adipocytes, the canonical Wnt/ß-catenin pathway regulates de novo lipogenesis (DNL) and fatty acid monounsaturation. Further, ß-catenin mediates effects of Wnt signaling on lipid metabolism in part by transcriptional regulation of Mlxipl and Srebf1. Intriguingly, adipocyte-specific loss of ß-catenin is sensed and defended by CD45-/CD31- stromal cells to maintain tissue-wide Wnt signaling homeostasis in chow-fed mice. With long-term high-fat diet, this compensatory mechanism is overridden, revealing that ß-catenin deletion promotes resistance to diet-induced obesity and adipocyte hypertrophy and subsequent protection from metabolic dysfunction. CONCLUSIONS: Taken together, our studies demonstrate that Wnt signaling in adipocytes is required for lipogenic gene expression, de novo lipogenesis, and lipid desaturation. In addition, adipose tissues rigorously defend Wnt signaling homeostasis under standard nutritional conditions, such that stromal-vascular cells sense and compensate for adipocyte-specific loss. These findings underscore the critical importance of this pathway in adipocyte lipid metabolism and adipose tissue function.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Via de Sinalização Wnt/fisiologia , Adipócitos/fisiologia , Adipogenia/fisiologia , Tecido Adiposo/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Diferenciação Celular , Células Cultivadas , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Metabolismo dos Lipídeos , Lipogênese/fisiologia , Camundongos , Camundongos Knockout , Obesidade , Proteína de Ligação a Elemento Regulador de Esterol 1 , Células Estromais/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , Proteína Wnt1/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
14.
Mol Metab ; 39: 100992, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32325263

RESUMO

OBJECTIVE: Obesity is a key risk factor for many secondary chronic illnesses, including type 2 diabetes and cardiovascular disease. Canonical Wnt/ß-catenin signaling is established as an important endogenous inhibitor of adipogenesis. This pathway is operative in mature adipocytes; however, its roles in this context remain unclear due to complexities of Wnt signaling and differences in experimental models. In this study, we used novel cultured cell and mouse models to investigate functional roles of Wnts secreted from adipocytes. METHODS: We generated adipocyte-specific Wntless (Wls) knockout mice and cultured cell models to investigate molecular and metabolic consequences of disrupting Wnt secretion from mature adipocytes. To characterize Wls-deficient cultured adipocytes, we evaluated the expression of Wnt target and lipogenic genes and the downstream functional effects on carbohydrate and lipid metabolism. We also investigated the impact of adipocyte-specific Wls deletion on adipose tissues and global glucose metabolism in mice fed normal chow or high-fat diets. RESULTS: Many aspects of the Wnt signaling apparatus are expressed and operative in mature adipocytes, including the Wnt chaperone Wntless. Deletion of Wntless in cultured adipocytes results in the inhibition of de novo lipogenesis and lipid monounsaturation, likely through repression of Srebf1 (SREBP1c) and Mlxipl (ChREBP) and impaired cleavage of immature SREBP1c into its active form. Adipocyte-specific Wls knockout mice (Wls-/-) have lipogenic gene expression in adipose tissues and isolated adipocytes similar to that of controls when fed a normal chow diet. However, closer investigation reveals that a subset of Wnts and downstream signaling targets are upregulated within stromal-vascular cells of Wls-/- mice, suggesting that adipose tissues defend loss of Wnt secretion from adipocytes. Interestingly, this compensation is lost with long-term high-fat diet challenges. Thus, after six months of a high-fat diet, Wls-/- mice are characterized by decreased adipocyte lipogenic gene expression, reduced visceral adiposity, and improved glucose homeostasis. CONCLUSIONS: Taken together, these studies demonstrate that adipocyte-derived Wnts regulate de novo lipogenesis and lipid desaturation and coordinate the expression of lipogenic genes in adipose tissues. In addition, we report that Wnt signaling within adipose tissues is defended, such that a loss of Wnt secretion from adipocytes is sensed and compensated for by neighboring stromal-vascular cells. With chronic overnutrition, this compensatory mechanism is lost, revealing that Wls-/- mice are resistant to diet-induced obesity, adipocyte hypertrophy, and metabolic dysfunction.


Assuntos
Adipócitos/metabolismo , Regulação da Expressão Gênica , Lipogênese/genética , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Biomarcadores , Células Cultivadas , Dieta/efeitos adversos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Glucose/metabolismo , Imuno-Histoquímica , Insulina/metabolismo , Metabolismo dos Lipídeos/genética , Doenças Metabólicas/diagnóstico , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Via de Sinalização Wnt
15.
Indian J Ophthalmol ; 68(1): 72-76, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31856472

RESUMO

Purpose: To assess and compare the endothelial cell changes after manual small incision cataract surgery (SICS) in diabetic patients versus age group matched non-diabetic patients. Methods: This comparative prospective observational follow-up study included 54 diabetic patients and 52 control patients without diabetes who underwent manual SICS. Preoperative, one day, one week, one month and three months post-surgery assessments of corneal endothelial cell changes were done using specular microscopy. Data analysis was performed using SPSS software (version 20.0, SPSS, Inc.). Mann-Whitney U test was used to compare the data between the test group and control group. Results: There was drop in the endothelial density in both the groups postoperatively, with the mean percentage of endothelial loss at three months post- surgery being 27.5% in diabetics and 18.3% in controls. There was also a significant increase in central corneal thickness and coefficient of variance in diabetics as compared to controls at every follow up one day, one week, one month and three months. The percentage of hexagonality was statistically significant at post-operative three months. Conclusion: The diabetic endothelium was found to be under greater metabolic stress and had less functional reserve after manual SICS than the normal corneal endothelium.


Assuntos
Catarata/complicações , Perda de Células Endoteliais da Córnea/etiologia , Diabetes Mellitus , Endotélio Corneano/patologia , Microcirurgia/efeitos adversos , Facoemulsificação/efeitos adversos , Complicações Pós-Operatórias , Idoso , Idoso de 80 Anos ou mais , Perda de Células Endoteliais da Córnea/patologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Facoemulsificação/métodos , Período Pós-Operatório , Estudos Prospectivos
16.
J Biol Chem ; 294(48): 18408-18420, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31615896

RESUMO

Although adipogenesis is mainly controlled by a small number of master transcription factors, including CCAAT/enhancer-binding protein family members and peroxisome proliferator-activated receptor γ (PPARγ), other transcription factors also are involved in this process. Thyroid cancer cells expressing a paired box 8 (PAX8)-PPARγ fusion oncogene trans-differentiate into adipocyte-like cells in the presence of the PPARγ ligand pioglitazone, but this trans-differentiation is inhibited by the transcription factor NK2 homeobox 1 (NKX2-1). Here, we tested whether NKX family members may play a role also in normal adipogenesis. Using quantitative RT-PCR (RT-qPCR), we examined the expression of all 14 NKX family members during 3T3-L1 adipocyte differentiation. We found that most NKX members, including NKX2-1, are expressed at very low levels throughout differentiation. However, mRNA and protein expression of a related family member, NKX1-2, was induced during adipocyte differentiation. NKX1-2 also was up-regulated in cultured murine ear mesenchymal stem cells (EMSCs) during adipogenesis. Importantly, shRNA-mediated NKX1-2 knockdown in 3T3-L1 preadipocytes or EMSCs almost completely blocked adipocyte differentiation. Furthermore, NKX1-2 overexpression promoted differentiation of the ST2 bone marrow-derived mesenchymal precursor cell line into adipocytes. Additional findings suggested that NKX1-2 promotes adipogenesis by inhibiting expression of the antiadipogenic protein COUP transcription factor II. Bone marrow mesenchymal precursor cells can differentiate into adipocytes or osteoblasts, and we found that NKX1-2 both promotes ST2 cell adipogenesis and inhibits their osteoblastogenic differentiation. These results support a role for NKX1-2 in promoting adipogenesis and possibly in regulating the balance between adipocyte and osteoblast differentiation of bone marrow mesenchymal precursor cells.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Diferenciação Celular/genética , Proteínas de Homeodomínio/genética , Proteínas Nucleares/genética , Osteoblastos/metabolismo , Fatores de Transcrição/genética , Células 3T3-L1 , Adipócitos/citologia , Animais , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Osteoblastos/citologia , Fator de Transcrição PAX8/genética , Fator de Transcrição PAX8/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Interferência de RNA , Fatores de Transcrição/metabolismo
17.
J Vis Exp ; (149)2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31355801

RESUMO

Adipose tissues are complex organs with a wide array of functions, including storage and mobilization of energy in response to local and global needs, uncoupling of metabolism to generate heat, and secretion of adipokines to regulate whole-body homeostasis and immune responses. Emerging research is identifying important regional differences in the developmental, molecular, and functional profiles of adipocytes located in discrete depots throughout the body. Different properties of the depots are medically relevant since metabolic diseases often demonstrate depot-specific effects. This protocol will provide investigators with a detailed anatomic atlas and dissection guide for the reproducible and accurate identification and excision of diverse mouse adipose tissues. Standardized dissection of discrete adipose depots will allow detailed comparisons of their molecular and metabolic characteristics and contributions to local and systemic pathologic states under various nutritional and environmental conditions.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Dissecação/métodos , Obesidade/metabolismo , Animais , Humanos , Camundongos
18.
Nutrients ; 11(6)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234301

RESUMO

Overnutrition during critical windows of development plays a significant role in life-long metabolic disease risk. Early exposure to excessive nutrition may result in altered programming leading to increased susceptibility to obesity, inflammation, and metabolic complications. This study investigated the programming effects of high-fat diet (HFD) exposure during the lactation period on offspring adiposity and inflammation. Female C57Bl/6J dams were fed a normal diet or a 60% HFD during lactation. Offspring were weaned onto a normal diet until 12 weeks of age when half were re-challenged with HFD for 12 weeks. Metabolic testing was performed throughout adulthood. At 24 weeks, adipose depots were isolated and evaluated for macrophage profiling and inflammatory gene expression. Males exposed to HFD during lactation had insulin resistance and glucose intolerance as adults. After re-introduction to HFD, males had increased weight gain and worsened insulin resistance and hyperglycemia. There was increased infiltration of pro-inflammatory CD11c+ adipose tissue macrophages, and bone marrow was primed to produce granulocytes and macrophages. Bone density was lower due to enhanced marrow adiposity. This study demonstrates that maternal HFD exposure during the lactational window programs offspring adiposity, inflammation, and impaired glucose homeostasis.


Assuntos
Tecido Adiposo/fisiopatologia , Adiposidade , Medula Óssea/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Hiperglicemia/etiologia , Inflamação/etiologia , Lactação , Exposição Materna/efeitos adversos , Fenômenos Fisiológicos da Nutrição Materna , Obesidade/etiologia , Tecido Adiposo/metabolismo , Fatores Etários , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Medula Óssea/metabolismo , Feminino , Hiperglicemia/sangue , Hiperglicemia/fisiopatologia , Inflamação/sangue , Inflamação/fisiopatologia , Mediadores da Inflamação/sangue , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Estado Nutricional , Obesidade/sangue , Obesidade/fisiopatologia , Fatores de Risco , Fatores Sexuais , Fatores de Tempo , Aumento de Peso
19.
J Clin Invest ; 129(6): 2404-2416, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31063988

RESUMO

Bariatric surgeries are integral to the management of obesity and its metabolic complications. However, these surgeries cause bone loss and increase fracture risk through poorly understood mechanisms. In a mouse model, vertical sleeve gastrectomy (VSG) caused trabecular and cortical bone loss that was independent of sex, body weight, and diet, and this loss was characterized by impaired osteoid mineralization and bone formation. VSG had a profound effect on the bone marrow niche, with rapid loss of marrow adipose tissue, and expansion of myeloid cellularity, leading to increased circulating neutrophils. Following VSG, circulating granulocyte-colony stimulating factor (G-CSF) was increased in mice, and was transiently elevated in a longitudinal study of humans. Elevation of G-CSF was found to recapitulate many effects of VSG on bone and the marrow niche. In addition to stimulatory effects of G-CSF on myelopoiesis, endogenous G-CSF suppressed development of marrow adipocytes and hindered accrual of peak cortical and trabecular bone. Effects of VSG on induction of neutrophils and depletion of marrow adiposity were reduced in mice deficient for G-CSF; however, bone mass was not influenced. Although not a primary mechanism for bone loss with VSG, G-CSF plays an intermediary role for effects of VSG on the bone marrow niche.


Assuntos
Adipócitos/metabolismo , Células da Medula Óssea/metabolismo , Reabsorção Óssea/sangue , Gastroplastia , Fator Estimulador de Colônias de Granulócitos/sangue , Obesidade/sangue , Complicações Pós-Operatórias/sangue , Adipócitos/patologia , Adolescente , Adulto , Animais , Medula Óssea/patologia , Células da Medula Óssea/patologia , Reabsorção Óssea/etiologia , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Feminino , Gastrectomia , Humanos , Estudos Longitudinais , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/patologia , Obesidade/cirurgia , Complicações Pós-Operatórias/genética , Complicações Pós-Operatórias/patologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-30564437

RESUMO

Sri Lanka is experiencing a rapid increase in the number of people with diabetes mellitus (DM) due to population growth and aging. Physician shortages, outdated technology, and insufficient health education have contributed to the difficulties associated with managing the burden of disease. New models of chronic disease management are needed to address the increasing prevalence of DM. Medical students, business students, and faculty members from the University of Michigan partnered with the Grace Girls' Home, Trincomalee General Hospital, and Selvanayakapuram Central Hospital to identify and train diabetes-focused medical assistants (MAs) to collect and enter patient data and educate patients about their disease. Return visits to these MAs were encouraged so that patient progress and disease progression could be tracked longitudinally. Data entry was conducted through a cloud-based mechanism, facilitating patient management and descriptive characterization of the population. We implemented this pilot program in June 2016 in coordination with Trincomalee General Hospital and Selvanayakapuram Central Hospital. Over a 12-month period, 93 patients were systematically assessed by the medical assistants. All patients received education and were provided materials after the visit to better inform them about the importance of controlling their disease. Fifteen percent (14/93) of patients returned for follow-up consultation. Trained MAs have the potential to provide support to physicians working in congested health systems in low-resource settings. Public investment in training programs for MAs and greater acceptance by physicians and patients will be essential for handling the growing burden associated with chronic illnesses like DM. Trained MAs may also play a role in improved patient education and awareness regarding diabetes self-management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...